
CHAPTER 8 

Cars and Motorcycles 

Car racing games are a lot of fun. You can drive high-powered vehicles that you couldn’t 
possibly afford in real life, and you can drive them into trees. Between the speed, the power, 
and the spectacular fiery crashes, you can create a lot of exciting game scenarios using cars, 
motorcycles, and other motorized vehicles. But it’s important to get the physics right in a car 
or motorcycle simulation. Your game should properly model, for example, whether a Nissan 
350Z can outrun a police cruiser. 

In this chapter, we will explore the physics of cars and motorcycles, but the basic 
principles we will explore are equally applicable to other types of motorized vehicles. The 
focus will be on the external physics of the vehicles—how they accelerate, how they brake, 
how they travel around curves. We won’t go into the physics of the internal workings of 
motor vehicles. As a game programmer, you don’t really need to know the physics of the 
internal combustion engine or how disk brakes work. 

Some of the topics we will cover in this chapter include the following: 

 * A brief history of the automobile 

 * The basic force diagram of a car 

 * Engine torque and power: how to compute them from the engine turnover rate 

 * Gears and gear shifting: how gears are used to increase the torque applied to the wheels 

 * Rolling friction of car tires: what it is and how to calculate it 

 * Computing the acceleration and velocity of a car 

 * Braking: how brakes work and how to model braking in game programs 

 * Wheel traction and how it can limit the acceleration of a car 

 * Turning: how to compute turn radius and turn rate and how to model the effects of 
high-speed turns 

 * Motorcycles and how they turn 

We’ll also develop a car simulator that will model the performance and operation of a 
sports car. 

Cars 
You can create a lot of exciting game simulations involving cars, whether it’s car races, car 
chases, or just simulating the life of a taxi driver. Putting realistic physics into a car 
simulation really just involves applying some basic concepts from Newtonian mechanics and 
kinematics with a little knowledge about how power is transferred from the engine to the 
wheels. 



In this section, we’ll start with the basics of straight-line driving and explore topics such 
as the forces that act upon a moving car, engine torque, and how gears and a transmission 
transfers the engine power to the wheels. We’ll revisit the subjects of aerodynamics and 
rolling friction as they apply to the motion of a car. With these topics in hand, we’ll explore 
how to model the acceleration and velocity of a car. Later, we’ll investigate such topics as 
what happens when a car drives around a curve and wheel traction, and we’ll also develop a 
simple car simulator. 

Keep in mind when reading this section that it provides the basic theory of car physics. It 
will give you the information you need to create a fairly realistic car simulation. Advanced 
topics such as weight transfer during braking and cornering are not included in the model we 
will develop, but if you want to get “fancy” with your car simulation, it would be pretty 
straightforward to add advanced effects to the basic model. We’ll discuss briefly how to go 
about adding advanced effects at the end of the chapter. 

A Brief History of the Automobile 

People have been thinking about, designing, and building motorized vehicles for a very long 
time. The first working motorized vehicle was a steam-powered tractor built by a French 
engineer named Nicolas Cugnot in 1769. It was intended to pull cannons and had a top speed 
of 4 km/hr. Mr. Cugnot was also the first person to have a car accident when he drove his 
vehicle into a stone wall in 1771. 

The development of automobiles took a big leap forward towards the end of the 
nineteenth century when a German engineer named Karl Benz designed and built the first 
vehicle powered by an internal combustion gasoline-powered engine. While cars gained in 
popularity over the next 20 years, they were quite expensive and considered mostly toys for 
the rich. In 1913, the American Henry Ford perfected the assembly line, which could 
assemble a Model T car in only 93 minutes. Such improved productivity greatly reduced the 
cost of buying a car. By 1927, over 15 million Model T’s had been built and sold. 

Obviously, cars have never looked back, and they are a crucial element of the 
transportation systems of almost every country on earth. Cars have also become a form of 
entertainment for people who like to drive fast, look good, or just generally have a good time. 

Basic Force Diagram 

A schematic of the forces acting on a car driving in a straight line on an inclined surface is 
shown in Figure 8-1. The angle of the slope is equal to θ. The car is influenced by the forces 
of gravity, static friction, rolling friction, and aerodynamic drag—all subjects you have 
learned about earlier in the book. The engine applies a torque, Te, to the car wheels that 
generates the force that moves the car forward. In Figure 8-1, the torque is applied to the 
front wheels of the car. 



 

Figure 8-1. Force balance on a car driving in a straight line on a horizontal surface 

As you can see from Figure 8-1, there are quite a few forces acting on the car, so let’s go 
over them one by one. The force of gravity pulls the car towards the earth. It acts both normal 
to the slope with a force, FgN = mgcosθ, as well as parallel to the slope with a force, FgP = 
mgsinθ. Depending on whether the car is pointing uphill or downhill, the parallel component 
of gravitational force can either pull the car forwards or backwards. 

This force of gravity in the normal direction, FgN, is balanced by normal forces, FNf and 
FNr, that act along the surfaces of the front and rear tires that are in contact with the ground. 
The total normal force, FN, is the sum of the forces on the front and rear tires and is equal to 
the mass of the car multiplied by the acceleration due to gravity and the cosine of the slope 
angle, θ. 
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The engine generates torque, which when applied to the wheels causes them to rotate. 
Friction between the tires and the ground resists this motion, resulting in a force applied to 
the tires in the direction opposite to the rotation of the tires. The force applied to the tires, FT, 
is equal to the torque applied to the wheels, Tw, divided by the wheel radius, rw. 
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As we shall see in the “Gears and Wheel Torque” section a little later in this chapter, the 
torque applied to the wheels is generally not equal to the torque generated by the engine. 

When the car is in motion, an aerodynamic drag force will develop that will resist the 
motion of the car. As we saw in Chapter 5, drag force can be modeled as a function of the air 
density, ρ, frontal area, A, the square of the velocity magnitude, v, and a drag coefficient, CD. 

  
F
D
=
1

2
C
D
ρv2A   (8.3) 

As was the case with projectiles, aerodynamic drag acts in the opposite direction to the 
velocity of the vehicle. We’ll discuss aerodynamic drag in more detail a little later in this 
chapter. The final force in the basic force diagram is due to rolling friction, which was 
introduced in Chapter 7. This force acts on all four wheels and resists the rolling motion of 
the car. The total rolling friction force, FR, is equal to the total normal force, FN, multiplied 
by the coefficient of rolling friction for the vehicle, µr. 
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The net force on the car parallel to the direction the car is driving, FTotal, is equal to the 
sum of the forces due to engine torque, gravity, aerodynamic drag, and rolling friction. 
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For the car shown in Figure 8-1, the sign on the parallel gravity force term, mgsinθ, in 
Equation (8.5) is negative to indicate that it is pulling the car backwards. The acceleration of 
the car at any given time is equal to the net force on the vehicle divided by the mass of the 
vehicle, m. 
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The velocity of the vehicle at any given time can be found by integrating Equation (8.6). 
Before we can integrate Equation (8.6), however, we need to evaluate the torque that is 
applied to the wheels. 

Engine Torque and Power 

When the engine runs, it generates a torque that is used to drive the car forward or backward. 
As we shall see later in this chapter, the torque generated by the engine is typically not the 
same as the torque applied to the wheels. The engine torque is a function of the rate at which 
the engine is turning over. 

( )e e eT T= Ω    (8.7) 

The engine turnover rate, Ωe, in Equation (8.7) is usually expressed in terms of 
revolutions per minute, or rpm. If the engine torque is plotted as a function of engine turnover 
rate, the result is what is known as a torque curve. These curves are usually available for a 
given car from the manufacturer or from other sources. A typical torque curve is shown in 
Figure 8-2. One characteristic of engine torque is that it does not always increase with 
increasing engine turnover rate. The torque in the curve shown in Figure 8-2 increases with 
increasing rpm until it reaches a peak value of 309 N-m at about 4600 rpm. As the engine 
turnover rate increases beyond 4600 rpm, the torque delivered by the engine decreases. 



 

Figure 8-2. A typical torque curve 

The 2004 Porsche Boxster S 

To help you understand how to apply the equations presented in this chapter, we will use as a 
test case the 2004 Porsche Boxster S sports car, a picture of which is shown in Figure 8-3. 
The Boxster S was chosen because it is a fast, sporty-looking car and because the author has 
always wanted to own one. 

 

Figure 8-3. The Porsche Boxster S (Photo courtesy of Tony Straughn, www.pictures-of-cars.com) 

The torque curve for a 2004 Porsche Boxster S is the one shown in Figure 8-2 and is 
based on data obtained from the Porsche website at www.porsche.com. The peak engine torque 
value of 309.2 N-m occurs when the engine is turning over at 4600 rpm. The torque curve 



will be used a little later on to develop a model that will compute the acceleration of the 
Boxster S at any point in time. But first let’s discuss another important topic concerning 
engine performance, namely engine power. 

Power and Torque 

Generally, when people talk about the performance of an engine, they refer to its power 
rather than its torque. Recall from Chapter 3 that power is an amount of work done in a unit 
of time. When applied to the output of a car engine, power, Pe, is equal to the engine torque 
multiplied by the angular velocity of the engine. 
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The angular velocity of the engine, ωe, in rad/s can be obtained by multiplying the engine 
turnover rate by 2π and dividing by 60. 
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A plot of the power generated by the Boxster S as a function of engine turnover rate, 
known as a power curve, is shown in Figure 8-4. Similar to the torque curve, the peak power 
occurs at a certain rpm level and decreases after that. The peak power output of the Boxster 
engine is 1.92e + 5 W and occurs at about 6200 rpm. Comparing the power and torque curves 
in Figure 8-2 and 8-4, the peak power for the engine occurs at a higher rpm level than does 
the peak torque. 

 

Figure 8-4. The power curve for the 2004 Boxster S 

Gears and Wheel Torque 

The torque applied to the wheels of a car determines its acceleration. In general, the torque 
applied to the wheels is not the same as the engine torque because before the engine torque is 
applied to the wheels it passes through a transmission. A typical transmission cross-section 



is shown in Figure 8-5. You can see that a modern transmission is quite complicated, with a 
lot of gears, shafts, and other strange-looking things. 

 

Figure 8-5. A cross-section of a transmission (Photo courtesy of Daimler-Chrysler) 

You might ask yourself, “Why bother with a transmission? Why not connect the torque 
from the engine directly to the wheels?” A big reason for the existence of transmissions is 
performance. In looking at Figure 8-2, when the engine turnover rate is low, the torque and 
therefore acceleration is relatively low as well. In fact, if the engine was connected directly to 
the wheels, it would take the Boxster S over 16 seconds to accelerate to 100 km/hr. That 
would be pretty boring performance for a sports car. 

Fortunately, the acceleration of a car can be greatly increased by using a transmission. 
What the gears inside the transmission do is to change the angular velocity and torque 
transferred from the engine. To see how this is done, consider the two gears shown in Figure 
8-6. The second gear has twice the diameter of the first gear, so for every revolution the 
second gear makes, the first gear will make two. The second gear has half the angular 
velocity of the first gear. However, the torque that the second gear can exert is twice that of 
the first gear. 

 

Figure 8-6. Gears are used to change angular velocity and torque. 

The gear ratio between two gears is the ratio of the gear diameters. In Figure 8-6, the 
gear ratio between the second and first gears would be 2:1. Car transmissions will typically 
have between three and six forward gears and one reverse gear. There is also an additional set 
of gears between the transmission and the wheels. In many cars, this gearset is known as the 
differential. The gear ratio of this final gearset is known as the final drive ratio. 

So what the transmission does is to (generally) increase the torque that comes out of the 
engine at the cost of reducing the gear turnover rate. To determine the acceleration of the car, 



we need the torque applied to the wheels. The wheel torque, Tw, is equal to the engine torque, 
Te, multiplied by the gear ratio, gk, of whatever gear the car is in and the final drive ratio, G, 
of the car. 

 
T
w
= T

e
g
k
G   (8.10) 

Using Equation (8.10), the equation for the acceleration for the car shown in Figure 8-1 
can be modified in terms of the engine torque and gear ratios. 
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Another effect of the transmission gears is to change the angular velocity of the wheel 
relative to the turnover rate of the engine. The relationship between the engine turnover rate, 
Ωe, and wheel angular velocity, ωw, becomes the following: 
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The “60” term in Equation (8.12) is to convert the minutes in rpm to seconds. If the tires 
roll on the ground without slipping, the translational velocity of the car, v, can be related to 
the angular velocity of the wheel, and therefore to the engine turnover rate. 
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In looking at Equations (8.11) and (8.13), we can make the following observations about 
gear and final drive ratios: 

 * The higher the gear ratio, the higher the acceleration and the lower the car velocity for 
a given rpm. 

 * Increasing the final drive ratio increases the acceleration for all gears but likewise 
decreases the car velocity for a given rpm for all gears. 

As an example of the gear ratios for a typical sports car, Table 8-1 shows the gear ratios 
for the six forward gears of the 2004 Porsche Boxster S. The final drive ratio for the car is 
3.44. 

Table 8-1. Porsche Boxster S Gear Ratios 

Gear Gear Ratio 

First 3.82 

Second 2.20 

Third 1.52 

Fourth 1.22 

Fifth 1.02 

Sixth 0.84 

 



Determining Wheel Radius 

The acceleration and velocity expressions shown in Equations (8.11) and (8.13) are functions 
of the wheel radius, but how can this quantity be determined? Fortunately, the wheel radius 
can be calculated from information on the tire itself. Every tire will have a series of letters 
and numbers that identify the tire. For example, the front tires of the Porsche Boxster S have 
the identification 225/40ZR-18. The first number, 225 for the Boxster, indicates the width of 
the tire in millimeters. The number after the slash symbol, /, is the ratio of the tire thickness 
to the tire width expressed as a percentage. The letters indicate the conditions for which the 
tire is designed. The last two numbers represent the diameter of the wheel that fits the tire in 
inches. The tire radius is equal to the wheel radius added to the tire thickness. Based on the 
tire designation, 225/40ZR-18, the radius of the Boxster S front tire is 0.3186 m. 

Gear Shifting 

We learned in the last section that a lower gear (with a higher gear ratio) results in a greater 
acceleration. So why not just stay in first gear all the time? Wouldn’t that optimize the 
acceleration of the car? This is the flip side to the question, “Why not connect the engine 
directly to the wheels?” The answer is, “No, you shouldn’t stay in first gear all the time.” The 
reason is that the velocity of the car is a function of engine turnover rate and gear ratios, and 
there is a limit to how fast the engine can turn over. 

Every car engine has a characteristic known as a redline rpm value. The engine cannot 
exceed this turnover rate for more than a brief period of time without causing damage to the 
engine. On the Porsche Boxster S, the redline value is 7200 rpm. Using Equation (8.13) and 
the data in Table 8-1, the theoretical maximum velocity for each gear at 7200 rpm can be 
computed, and the results are shown in Table 8-2. 

Table 8-2. Theoretical Maximum Velocity for Each Gear for the Boxster S 

Gear Maximum Velocity (m/s) Maximum Velocity, (km/hr) 

1
st
 18.3 65.8 

2
nd
 31.7 114.3 

3
rd
 45.9 165.4 

4
th
 57.2 206.0 

5
th
 68.5 246.4 

6
th
 83.1 299.3 

 

We can see from Table 8-2 that although the maximum acceleration occurs in first gear, 
the maximum velocity the car can attain in first gear is 65.8 km/hr. At this point, you would 
reach the redline rpm value and have to shift into second gear, which would provide the 
optimum acceleration between 65.8 and 114.3 km/hr. At this point, the rpm level would reach 
the redline value again, and the car would have to be shifted into third gear. Most 
transmissions are designed so the shift point for optimum acceleration is at the redline value 
of the car. 

Keep in mind that the values in Table 8-2 are theoretical maximum velocities. The 
Boxster S can’t really reach 299.3 km/hr in sixth gear. According to the manufacturer’s 



specifications, the top speed of the car is “only” 266 km/hr. The reason the car can’t reach the 
theoretical maximum velocity in sixth gear is because the car is also subject to the 
decelerating forces of aerodynamic drag and rolling friction. 

Equation (8.13) can also be used to calculate what the engine rpm value will be after a 
gear shift. If the car is shifted into a higher gear, the gear ratio is reduced. If the velocity of 
the car is assumed to be constant before and after the gear shift, the engine rpm level will 
decline because of the lower gear ratio. The new engine turnover rate, Ωe(new), will be equal 
to the engine turnover rate before the gear shift,  Ωe(old), multiplied by the ratio of the new 
gear ratio to the previous gear ratio. 
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For example, if the Boxster S shifts from first gear to second gear at 7200 rpm, the new 
rpm level of the engine after the gear shift will be the following: 
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This is an effect you’ve probably seen quite a bit. If you are driving a car and shift from a 
lower gear to a higher gear, the rpm level of the engine falls. The opposite is also true; if you 
shift from a higher gear into a lower gear, the rpm level of the engine will surge. 

Manual and Automatic Transmissions 

There are two general types of transmissions. With a manual transmission the driver must 
make all of the gear shifts manually. An automatic transmission is one where the 
transmission shifts automatically. When the automatic transmission will shift varies from 
transmission to transmission but usually is dependent on the car velocity, the engine turnover 
rate, and the load being put on the engine. If you wanted to use an automatic transmission in 
your game programs, you could just specify when the transmission would shift. The 
automatic transmission in the author’s 1997 Toyota Camry shifts when the engine turnover 
rate is between 3000 and 4000 rpm. 

Aerodynamic Drag 

A car in motion is subject to the force of aerodynamic drag. As we know, drag acts in the 
opposite direction to the velocity vector of an object, so drag force will cause the car to slow 
down. As shown in Equation (8.3), the drag force on a car is expressed as a function of the air 
density, velocity of the car squared, the frontal area of the car, and a drag coefficient. 

To evaluate Equation (8.3), we need to determine the drag coefficient and frontal area of 
the car. 

Drag Coefficients for Motor Vehicles 

The drag coefficient for a car or other motor vehicle will depend on the shape of the vehicle. 
A sports car will have a lower drag coefficient than will a garbage truck. Typical drag 
coefficient ranges for several vehicle types1 are shown in Table 8-3. 

Table 8-3. Drag Coefficients for Some Typical Vehicle Types 



Vehicle Type Drag Coefficient 

Sports car 0.27 – 0.38 

’60s muscle car 0.38 – 0.5 

Sedan 0.34 – 0.5 

Truck 0.6 – 1.0 

Tractor-Trailer 0.6 – 1.2 

Motorcycle 0.5 – 1.0 

 
While there may be some variation in vehicle drag coefficient due to its Reynolds number 

and other effects, for game programming purposes, you can assume a constant drag 
coefficient for the vehicles you are simulating. The drag coefficient for the 2004 Porsche 
Boxster S that we have been using as an example in this chapter is 0.31. 

Frontal Area 

The drag force, as expressed by Equation (8.3), is a function of the frontal area of the car. 
The simplest estimate of the frontal area of a vehicle is the product of the width and height of 
the vehicle. This method assumes that the frontal cross-section of the vehicle is rectangular. 
In reality, sides of most cars are sloped so the true frontal area is less than the product of the 
width and height. One way to account for frontal area slope is to multiply the width and 
height of the vehicle by a factor between 0 and 1. For the car simulator we will develop later 
in this chapter, a factor of 0.85 is used to compute the frontal area of the Boxster S. 

  A = 0.85*width * height  (8.16) 

The Boxster S has a width of 1.78 m and a height of 1.28 m. Using Equation (8.16), the 
frontal area of the vehicle, for purposes of computing the drag force, would be 1.94 m2. 

Rolling Friction 

As you learned in Chapter 7, rolling friction is a force that resists the rolling motion of an 
object. While it is referred to as friction, it really is a contact force caused by the deformation 
of the object and the surface it is rolling over. As shown in Equation (8.4), the force due to 
rolling friction, Fr, between the tires and the ground is equal to the normal force exerted on 
the object, FN, multiplied by a coefficient of rolling friction, µr. If the car is traveling over flat 
ground, the normal force will be equal to mg. 

The value of the coefficient of rolling friction tends to be significantly lower than the 
coefficients of static or kinetic friction for the same object. For car tires, the coefficient of 
rolling friction ranges from 0.01 to 0.02.2 

Computing Acceleration and Velocity 

In order to create a car simulation, it is necessary to determine the acceleration and velocity 
of the car at any point in time. The starting point for this analysis is Equation (8.11). In the 
preceding sections, values were presented for the coefficient of rolling friction and drag 



coefficient of a car. If the slope angle, frontal area, and air density are known, the only 
unknown quantity in Equation (8.11) is the wheel torque, Tw. 

According to Equation (8.10), the wheel torque is the product of the engine torque, Te, 
the current gear ratio, gk, and the final drive ratio, G. The engine torque, Te, can be obtained 
from the torque curve of the engine. Torque curve data is usually presented either as a plot or 
as a table of numbers. For game programming purposes, the torque curve needs to be 
expressed as a mathematical expression. The easiest way to mathematically model a torque 
curve is with a series of straight lines. 

For example, the torque curve for the Boxster S as shown in Figure 8-2 can be 
approximated by three straight lines. The first line extends from a torque value of 220 N-m at 
1000 rpm up to 4600 rpm where the torque peaks at 309.2 N-m. A second line is drawn from 
4600 rpm to the redline value of 7200 rpm where the torque is approximately 227 N-m. 
Below 1000 rpm, the idle speed of the engine, the torque will be assumed to be 220 N-m. The 
simplified torque curve is shown in Figure 8-7. 

 

Figure 8-7. Simplified torque curve for the Porsche Boxster S 

Using the simplified torque curve, the torque for the Boxster S can be modeled by three 
equations. The units for engine torque in all three equations are in N-m. 
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All three of the lines described by Equations (8.17a) through (8.17c) are specific cases of 
the general equation for a straight line. 
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The b parameter in Equation (8.18) is the slope of the line. Of course, straight lines aren’t 
the only way to mathematically model a torque curve. Depending on the shape of the curve, a 
parabolic or exponential function could also be used to approximate a torque curve. 

Having a mathematical expression for the torque curve is all well and good, but to solve 
for the acceleration of the car what we really need is an equation for the wheel torque as a 
function of the current velocity of the car. An equation that relates wheel torque to car 
velocity can be derived if the assumption is made that the tires roll without slipping. Under 
this condition, the velocity of the car, v, is equal to the wheel radius, rw, multiplied by the 
angular velocity of the wheel, ωw. As seen in Equation (8.12), the angular velocity is a 
function of the engine turnover rate and the gear and final drive ratios. 
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As a reminder, the “60” term in Equation (8.19) converts the engine turnover rate from 
rpm to rev/s. Plugging Equations (8.18) and (8.19) into Equation (8.11) results in an 
expression for the acceleration of the car as a function of the current velocity of the car. 
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Equation (8.20) looks really messy, but it’s really just an algebraic equation. The 
constants can be grouped together to form a simpler equation in which the acceleration of the 
car is a function of the current velocity of the car. 
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The constants, c1, c2, and c3, in Equation (8.21) are the following: 
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In looking at Equation (8.20), we can observe what parameters influence the acceleration 
value of the car. Some conclusions are pretty obvious—the heavier the car, the lower the 
acceleration. If the gear and final drive ratios are increased, the acceleration is increased. 
Reducing the rolling friction of the wheels increases the acceleration. 

Keep in mind that Equation (8.20) represents the maximum acceleration available at a 
given velocity. It’s based on the wheel torque that would result if you pushed the gas pedal 
all the way to the floor. In real life, using the maximum acceleration all the time would be a 
pretty extreme way of driving. If the gas pedal was pushed only part way down, the actual 
torque applied to the wheels would be some fraction of the maximum possible torque. For 
game programming purposes, you might apply the maximum possible wheel torque if the gas 
pedal were pushed all the way down, half the torque if the pedal were pushed half way down, 
and so on. 



The acceleration shown in Equation (8.20) assumes that the tires roll without slipping on 
the ground. In many cases, the maximum available torque will generate a force that is greater 
than the maximum frictional force between the tires and the ground. When this happens, the 
wheels won’t roll without slipping; instead, the wheels will spin across the road surface in the 
classic “burning rubber” effect. We’ll discuss tire slippage in the “Wheel Traction” section a 
little later in this chapter. 

Another thing to remember is that the acceleration equation shown in Equation (8.20) is 
really an idealized case. It assumes there is no loss in engine torque as it goes through the 
transmission and differential. In reality, there is some loss due to friction between the 
mechanical parts. On the other hand, using straight lines to model the torque curve tends to 
underpredict the engine torque. The two assumptions would somewhat cancel each other out, 
and for game programming purposes, Equation (8.20) is probably sufficient. 

Equation (8.20) or the alternative form shown in Equation (8.21) can be used to solve for 
the velocity of the car over time. It turns out that there is a closed-form solution to Equation 
(8.21), but it is quite messy and has different forms depending on the relative values of the c1, 
c2, and c3 constants. It’s easier if slightly slower to solve Equation (8.21) using our ODE 
solver, and that’s exactly what we’ll do when we develop a car simulator later in this section. 

Maximum Velocity 

Equation (8.21) can be used to compute the theoretical maximum velocity that a car can 
achieve. The maximum velocity will be the point where the net acceleration on the car is 
zero. But there is a catch, because at lower gears the redline rpm will be reached before the 
net acceleration on the car reaches zero. In this case, the maximum velocity, vmax, of a car is 
limited by the redline rpm value of the engine. 
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At higher gears (with lower gear ratios) the maximum velocity of a car is drag-limited. 
Drag will stop the car from accelerating any further before the redline rpm value is reached. 
If you recall, the drag force is proportional to the square of the velocity of the car. As velocity 
increases, the aerodynamic drag increases until a velocity is reached where the torque applied 
to the wheels is exactly balanced by the aerodynamic drag and rolling friction experienced by 
the vehicle. At this point the acceleration of the car, a, is zero. 
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The maximum velocity can be found using the standard equation for finding the roots of 
a quadratic equation. 
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Let’s use Equation (8.25) to compute the maximum velocity of the Porsche Boxster S 
when the car is in sixth gear. The drag coefficient of the car is 0.31, the empty mass is 1323 
kg, and the radius of the front wheels is 0.3186 m. We’ll assume that the coefficient of rolling 
friction is 0.015, the frontal area of the car is 1.94 m2, and the weight of the driver is 70 kg. 
The air density value will be taken to be 1.2 kg/m3. The car is assumed to be driving over flat, 
level ground, so the slope angle, θ, is equal to zero. 



The maximum velocity will occur in the higher rpm range, so the engine torque will be 
approximated by Equation (8.17c). This means that the b coefficient is equal to –0.032 and 
the d coefficient has a value of 457.2. In sixth gear, the maximum velocity of the car is likely 
to be drag-limited, so we’ll use Equation (8.25) to compute the maximum velocity. 
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The other solution to the vmax equation gives a negative value and can be ignored. The 
manufacturer’s published value for the top speed of the Boxster S is 266 km/hr. Considering 
the assumptions and simplifications that went into our model, it did a pretty good job of 
computing the top speed of the vehicle. 

The value of 271.5 km/hr is the drag-limited maximum velocity of the Boxster S. Let’s 
compare it to the redline-limited value calculated using Equation (8.23). 
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So the Boxster S could go 299 km/hr in sixth gear if there were no aerodynamic drag and 
no rolling friction. To get a feeling for the relative magnitudes for some of the force terms, 
let’s compare the magnitude of aerodynamic drag and rolling friction on the Boxster S when 
it has reached a speed of 271.5 km/hr. The drag force can be calculated from Equation (8.3). 
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0.31*1.2 *75.42 *1.94 = 2051N (8.28) 

The force of rolling friction can be computed from Equation (8.4). 

  
F
R
= 0.015*1393*9.81= 205  N  (8.29) 

In comparing the results from Equations (8.28) and (8.29), the aerodynamic drag force is 
10 times as large as the rolling friction force when the car is traveling at 271.5 km/hr. The 
rolling friction force is not a function of velocity. If the car were going 10 km/hr, the rolling 
friction force would still be 205 N, whereas the drag force would only be 2.8 N. 

Braking 

Driving a car is not all acceleration; sometimes you need to slow down, too. In this section, 
we will discuss two general ways a car can slow down (and no, one of them is not running 
into a tree). It turns out that an engine will slow itself down just by the nature of how the 
cylinders move up and down inside the engine. This effect is known as engine braking. The 



torque due to engine braking, Teb, is modeled mathematically by a constant known as the 
engine braking coefficient, µeb, multiplied by the turnover rate of the engine in rev/s. 
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It can be difficult to obtain the value of the engine braking coefficient for a given car. For 
an F1 race car, the coefficient has a value of 0.74.3 If this value is applied to the Boxster S, 
the torque due to engine braking at 6000 rpm is equal to 74 N-m corresponding to an 
acceleration of –0.17 m/s2. If you want to include the effects of engine braking in your car 
simulation and don’t have the precise value of engine braking coefficient for the car you are 
modeling, assuming a value of 0.74 is probably a reasonable estimate. 

Another way a car can be slowed down is if its brakes are applied. When the driver steps 
on the brake pedal, a brake pad is pressed up against a flat metal disk attached to the wheel. 
Friction between the brake pad and disk generates a torque that slows the wheels down. The 
torque caused by the brake pad acts in the opposite direction that the wheel is rotating. 

It can be difficult to find information about brake torque for a given car. Information on 
braking is usually presented as the distance it takes to brake a car from an initial velocity to a 
full stop. For example, the Boxster S requires 34 m to brake from a velocity of 26.8 m/s (60 
mi/hr) to a full stop. If braking distance data is available, the braking acceleration, ab, can be 
obtained from the Newtonian mechanics as a function of the initial velocity, v0, and braking 
distance, x. 
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Keep in mind when looking at the results in Equation (8.31), the driver who performed 
this test was trying to get the smallest braking distance possible, so he or she probably 
slammed on the brakes. The –10.4 value therefore can be considered the maximum braking 
deceleration for the Boxster S. 

For game programming purposes, if the value for the brake torque for a given car isn’t 
available, you can calculate the braking acceleration from braking distance data and apply 
that in your code. Keep in mind that the braking distance is based on the maximum braking 
force—if you slammed on the brakes. To simulate a more gentle braking action, you could 
simply take some fraction of the maximum braking acceleration. 

A Car Simulator 

Let’s take what we’ve learned about modeling the physics of cars and develop a car 
simulator. The GUI display for the car simulator is shown in Figure 8-8. At the top of the 
simulator is a display area that shows a picture of the car. Above the car are two rectangular 
markers. When the simulator runs, the car location remains fixed on the screen, and the 
markers move from left to right to simulate the forward motion of the car. The speed at which 
the markers move is proportional to the speed of the car. 

On the left-hand side of the GUI are three radio buttons that determine whether the car is 
accelerating, cruising at a constant velocity, or slowing down by braking. The radio buttons 
are mutually exclusive, so only one may be selected. Below the radio buttons are five 
buttons. The Start button starts or resumes the simulation. The Shift Up and Shift Down 
buttons cause the car to shift gears up or down. The Stop button stops the car, shifts the car 
into first gear, and lowers the engine turnover rate to 1000 rpm. The Reset button does the 
same things as the Stop button, but it also resets the distance and time values to zero. 



 

Figure 8-8. Car Simulator screen shot 

On the right-hand side of the display are text fields that show the current velocity and 
engine turnover rate of the car as well as what gear the car is currently in. Also included are 
text fields that display the distance the car has traveled and the total elapsed time of the 
simulation. At the bottom of the display is a text field used to present warning messages. If 
the engine turnover rate exceeds the redline rpm value, a message to that effect is shown in 
the text field. If the engine turnover rate exceeds 8000 rpm, you’ve “blown” the engine and 
the simulation will stop, as shown in Figure 8-9. 



 

Figure 8-9. If the rpm exceeds 8000, you’ve blown the engine. 

The GUI for this car simulation is pretty primitive, but the physics inside it are real and 
are based on the equations developed in this chapter. The effects of aerodynamic drag and 
rolling friction are included in the model. Some simplifications were made, however. The car 
is assumed to be driving in a straight line on flat ground. When the car is braking, the 
acceleration due to braking is assumed to be a constant –5.0 m/s2 at all times. We are also not 
modeling the reverse gear in this simulation, so the car is either stopped or is moving 
forward. 

The tires of the car in the Car Simulator are assumed to roll without slipping at all times. 
In real life, if too much torque is applied to the wheels, the maximum frictional force between 
the tires and the ground will be exceeded, and the tires will slip along the ground—the 
“burning rubber” effect. We’ll explore how to model tire slippage in more detail in the 
“Wheel Traction” section a little later in this chapter. 

Creating the car simulation requires two general types of classes—one representing the 
car and the other defining the GUI. We’ll start by discussing the classes that represent the 
cars. Two car classes will be written. The first class is called the Car class and represents a 
generic car. The Car class will declare the fields and methods that are common to all cars. 
The Car class will be written as a subclass of the DragProjectile class so it can reuse the code 
declared in the DragProjectile, SimpleProjectile, and ODE classes. 

public class Car extends DragProjectile 
{ 
  private double muR; 
  private double omegaE; 
  private double redline; 
  private double finalDriveRatio; 
  private double wheelRadius; 
  private int gearNumber;     //  Gear the car is in 
  private int numberOfGears;  //  Total number of gears 
  private String mode; 
  private double[] gearRatio;  //  Gear ratios 



The muR field represents the coefficient of rolling friction. The gearNumber field is the gear 
the car is currently in. The numberOfGears field contains the total number of forward gears in 
the transmission. The mode field defines whether the car is accelerating, cruising at constant 
velocity, or braking. The omegaE field is the engine turnover rate in rpm. The names of the 
other Car class fields are self-explanatory. 

The Car constructor is used to initialize the fields in the Car, DragProjectile, 
SimpleProjectile, and ODE classes. The first thing the constructor does is to call the 
DragProjectile class constructor. 

  //  The Car constructor calls DragProjectile constructor and 
  //  then initializes the car-specific variables. 
  public Car(double x, double y, double z, 
             double vx, double vy, double vz, 
             double time, double mass, double area, 
             double density, double Cd, double redline, 
             double finalDriveRatio, double wheelRadius, 
             int numberOfGears) { 
 
    super(x, y, z, vx, vy, vz, time, mass, area, 
          density, Cd); 

The Car constructor then initializes the fields declared in the Car class with values passed 
to the constructor. The size of the gearRatio array is set according to the value of the 
numberOfGears field. The gear ratios are initially given dummy values of 1. 

    //  Initialize some fields based on values passed 
    //  to the constructor. 
    this.redline = redline;           //  Redline rpm 
    this.finalDriveRatio = finalDriveRatio;  //  Final drive ratio 
    this.wheelRadius = wheelRadius;   //  Wheel radius 
    this.numberOfGears = numberOfGears;   //  Number of gears 
 
    //  Initialize the array that stores the gear ratios. 
    //  The array is shifted so the first index in the 
    //  array correpsonds to first gear and so on. 
    //  Give all gear ratios the dummy value of 1.0 
    gearRatio = new double[numberOfGears + 1]; 
    gearRatio[0] = 0.0; 
    for(int i=1; i<numberOfGears+1; ++i) { 
      gearRatio[i] = 1.0; 
    } 

Some of the Car field values will be set to the same value for all car classes including the 
fields that represent the coefficient of rolling friction, initial engine rpm, starting gear 
number, and mode. 

    //  Set some fields the same for all cars. 
    muR = 0.015;             //  Coefficient of rolling friction 
    omegaE = 1000.0;         //  Engine rpm 
    gearNumber = 1;          //  Gear the car is in 
    mode = "accelerating";   //  Accelerating, cruising, or 
                             //  braking 
  } 



After the constructor, the Car class declares a series of get/set methods to access or 
change the value of the fields declared in the class. Only some of the get/set methods are 
shown here. Download the complete code listing from the Apress website to see all of the 
get/set methods. 

  //  These methods return the value of the fields 
  //  declared in this class. 
  public double getMuR() { 
    return muR; 
  } 
 
  public double getFinalDriveRatio() { 
    return finalDriveRatio; 
  } 
 
  //  Other get methods not shown ... 
 
  public void setOmegaE(double value) { 
    omegaE = value; 
  } 
 
  //  Other set methods not shown ... 

One of the features of this car simulation is that you can shift gears. This functionality is 
implemented in the shiftGear method. The first thing the method does is to determine 
whether the desired shift is outside the possible range of gear numbers, in which case the 
method returns. If the shift is possible, the value of the gearNumber field is changed, and the 
new engine turnover rate is computed by multiplying the old turnover rate by the ratio of the 
new gear ratio to the old gear ratio. 

  //  This method simulates a gear shift. 
  public void shiftGear(int shift) { 
    //  If the car will shift beyond highest gear, return. 
    if ( shift + getGearNumber() > getNumberOfGears() ) { 
      return; 
    } 
    //  If the car will shift below 1st gear, return. 
    else if ( shift + getGearNumber() < 1 ) { 
      return; 
    } 
    //  Otherwise, change the gear and recompute 
    //  the engine rpm value. 
    else { 
      double oldGearRatio = getGearRatio(); 
      setGearNumber(getGearNumber() + shift); 
      double newGearRatio = getGearRatio(); 
      setOmegaE(getOmegaE()*newGearRatio/oldGearRatio); 
    } 
 
    return; 
  } 

Since the ODE solver will be used to update the position and velocity of the car, the Car 
class has to declare a getRightHandSide method to define the right-hand sides of the equations 



to be solved. The first part of the getRightHandSide method is similar to that found in many of 
the classes we’ve written previously. The intermediate values of location and velocity for the 
car are computed. In this simulation, we only are concerned with the x-components of 
location and velocity, but the y- and z-components are included in the method to make the 
class easily extendable to a car traveling in all three directions. 

  public double[] getRightHandSide(double s, double q[], 
                              double deltaQ[], double ds, 
                              double qScale) { 
    double dQ[] = new double[6]; 
    double newQ[] = new double[6]; 
 
    //  Compute the intermediate values of the 
    //  dependent variables. 
    for(int i=0; i<6; ++i) { 
      newQ[i] = q[i] + qScale*deltaQ[i]; 
    } getRightHandSide 

The next thing the method does is to define the torque curve. We’re going to use the 
simplified torque curve shown in Figure 8-7 where three straight lines approximate the torque 
curve. The three lines are defined in Equations (8.17a) through (8.17c). Which line to use 
depends on the engine turnover rate. 

    //  Compute the constants that define the 
    //  torque curve line. 
    double b, d; 
    if ( getOmegaE() <= 1000.0 ) { 
      b = 0.0; 
      d = 220.0; 
    } 
    else if ( getOmegaE() < 4600.0 ) { 
      b = 0.025; 
      d = 195.0; 
    } 
    else { 
      b = -0.032; 
      d = 457.2; 
    } 

The getRightHandSide method computes the total drag and rolling friction forces from 
Equations (8.3) and (8.4). Because the field that represents the gravitational acceleration, G, 
was given a value of –9.81 in the SimpleProjectile class, the value of the rolling friction 
force will be negative. 

    //  Compute velocity magnitude. 
    double vx = newQ[0]; 
    double vy = newQ[2]; 
    double vz = newQ[4]; 
    double v = Math.sqrt(vx*vx + vy*vy + vz*vz) + 1.0e-8; 
 
    //  Compute the total drag force. 
    double Fd = 0.5*getDensity()*getArea()*getCd()*v*v; 
 
    //  Compute the force of rolling friction. Because 



    //  the G constant defined in the SimpleProjectile 
    //  class has a negative sign, the value computed here 
    //  will be negative. 
    double Fr = getMuR()*getMass()*G; 

The final part of the getRightHandSide method defines the right-hand side of the ODEs 
that describe the motion of the car. If the car is accelerating, the acceleration of the car is 
computed from Equation (8.20). If the car is braking and the velocity is positive, the 
acceleration of the car is set to –5.0 m/s2. If the car is cruising at constant velocity, the 
acceleration is set to zero. The equations for the y- and z-components of velocity are all set to 
zero. 

    //  Compute the right-hand sides of the six ODEs 
    //  newQ[0] is the intermediate value of velocity. 
    //  The acceleration of the car is determined by 
    //  whether the car is accelerating, cruising, or 
    //  braking. The braking acceleration is assumed to 
    //  be a constant -5.0 m/s^2. 
    if ( mode.equals("accelerating") ) { 
      double c1 = -Fd/getMass(); 
      double tmp = getGearRatio()*getFinalDriveRatio()/ 
                   getWheelRadius(); 
      double c2 = 60.0*tmp*tmp*b*v/(2.0*Math.PI*getMass()); 
      double c3 = (tmp*d + Fr)/getMass(); 
      dQ[0] = ds*(c1 + c2 + c3); 
    } 
    else if ( mode.equals("braking") ) { 
      //  Only brake if the velocity is positive. 
      if ( newQ[0] > 0.1 ) { 
        dQ[0] = ds*(-5.0); 
      } 
      else { 
        dQ[0] = 0.0; 
      } 
    } 
    else { 
      dQ[0] = 0.0; 
    } 
 
    dQ[1] = ds*newQ[0]; 
    dQ[2] = 0.0; 
    dQ[3] = 0.0; 
    dQ[4] = 0.0; 
    dQ[5] = 0.0; 
 
    return dQ; 
  } 
} 

The Car class represents a generic car and declares the fields and methods common to all 
cars. Classes for specific car types can be written as subclasses of the Car class and can define 
the field values for a specific car. For example, the Car Simulator will simulate the Boxster S, 
so we will write a BoxsterS class to represent that specific type of car. 



Because Java is an object-oriented programming language, writing the BoxsterS class is 
really easy because almost all of the functionality the BoxsterS class needs has already been 
defined in earlier classes. All the BoxsterS class needs to do is to define fields that contain the 
specs for the Boxster S. The BoxsterS constructor simply calls the Car constructor with the 
appropriate Boxster S values and then sets the gear ratio value by calling the setGearRatio 
method. 

public class BoxsterS extends Car 
{ 
  //  The BoxsterS constructor calls the Car constructor 
  //  and then sets the gear ratios for the BoxsterS. 
  //  Here are some specs for the BoxsterS 
  //  mass = 1393.0 kg (with 70 kg driver) 
  //  area = 1.94 m^2 
  //  Cd = 0.31 
  //  redline = 7200 rpm 
  //  finalDriveRatio = 3.44 
  //  wheelRadius = 0.3186 
  //  numberOfGears = 6; 
 
  public BoxsterS(double x, double y, double z, double vx, 
             double vy, double vz, double time, double density) { 
 
    super(x, y, z, vx, vy, vz, time, 1393.0, 1.94, 
          density, 0.31, 7200.0, 3.44, 0.3186, 6); 
 
    //  Set the gear ratios. 
    setGearRatio(1, 3.82); 
    setGearRatio(2, 2.20); 
    setGearRatio(3, 1.52); 
    setGearRatio(4, 1.22); 
    setGearRatio(5, 1.02); 
    setGearRatio(6, 0.84); 
  } 
} 

Now that the Car and BoxsterS classes are defined, they can be incorporated into the Car 
Simulator GUI. The class that implements the GUI is named CarSimulator. As with the other 
GUIs in this book, we will not go over every detail of the CarSimulator class, but you are 
encouraged to download the source code from the Apress website. As with most of the other 
sample games in this book, the CarSimulator class makes use of a Timer object to control the 
execution speed of the game. Among the fields declared in the CarSimulator class is a 
BoxsterS object that represents the car being modeled in the simulation. 

import javax.swing.*; 
import java.awt.*; 
import javax.swing.border.BevelBorder; 
import java.awt.event.*; 
import javax.swing.Timer; 
 
public class CarSimulator extends JFrame implements ActionListener 
{ 
  //  Other field declarations not shown ... 



 
  private BoxsterS car; 

When the Start button is pressed, the start method is called on the Timer object to start 
the simulation. The Timer object is set up to call the actionPerformed method every 0.05 
seconds. The first thing the actionPerformed method does is to determine whether the car is 
accelerating, cruising at a constant speed, or braking, and sets the value of the mode field 
accordingly. 

  //  This ActionListener is called by the Timer 
  class GameUpdater implements ActionListener { 
    public void actionPerformed(ActionEvent event) { 
      //  Figure out if the car is accelerating, 
      //  cruising, or braking, and set the mode of 
      //  the car accordingly. 
      if ( accelButton.isSelected() == true ) { 
        car.setMode("accelerating"); 
      } 
      else if ( cruiseButton.isSelected() == true ) { 
        car.setMode("cruising"); 
      } 
      else { 
        car.setMode("braking"); 
      } 

The updateLocationAndVelocity method is called to update the location and velocity of 
the car. This method is implemented in the DragProjectile class, but since the BoxsterS class 
is a subclass of DragProjectile, the method can be accessed inside the BoxsterS class. 

      //  Update the car velocity and position at the next 
      //  time increment. 
      double timeIncrement = 0.06; 
      car.updateLocationAndVelocity(timeIncrement); 

The new rpm value of the engine is computed using Equation (8.13). If the value exceeds 
the redline value for the car, a warning message is displayed. If the rpm value exceeds 8000, 
the engine is blown and the simulation stops. 

      //  Compute the new engine rpm value. 
      double rpm = car.getVx()*60.0*car.getGearRatio()* 
          car.getFinalDriveRatio()/(2.0*Math.PI*car.getWheelRadius()); 
      car.setOmegaE(rpm); 
 
      //  If the rpm exceeds the redline value, put a 
      //  warning message on the screen. First, clear the 
      //  message text field of any existing messages. 
      messageTextField.setText(""); 
      if ( car.getOmegaE() > car.getRedline() ) { 
        messageTextField.setText("Warning: Exceeding redline rpm"); 
      } 
      if ( car.getOmegaE() > 8000.0 ) { 
        messageTextField.setText("You have blown the engine!"); 
        gameTimer.stop(); 
      } 



Two rectangular markers are used to simulate the motion of the car. The car stays in a set 
location in the GUI display, and the rectangular markers move from right to left. The location 
of the markers is updated based on the velocity of the car. The factor of 10 is a scaling factor 
that relates the size of the car image to the actual length of the car. After the new marker 
locations have been determined, the GUI display is updated. 

      //  Update the location of the rectangular markers. 
      rectangleOneX = rectangleOneX + 10.0*car.getVx()*timeIncrement; 
      rectangleTwoX = rectangleTwoX + 10.0*car.getVx()*timeIncrement; 
 
      //  If the markers have gone off the display, move them 
      //  back to zero. 
      if ( rectangleOneX > 401.0 ) { 
        rectangleOneX = 0.0; 
      } 
      if ( rectangleTwoX > 401.0 ) { 
        rectangleTwoX = 0.0; 
      } 
 
      //  Update the display. 
      resetDisplay(); 
    } 
  } 
} 

Play around with the Car Simulator. Switch the mode to “accelerate” and push the Start 
button to start the simulation. Be sure to watch the rpm value and shift up before it hits the 
redline value. When you get to sixth gear, let the car run and see what the maximum velocity 
of the car is. Then select the “brake” mode and watch the car slow down. If you want to play 
with shifting gears up and down, you can set the mode to “cruise”, which will hold the 
velocity constant. If for some reason the entire GUI is not rendered, press the Reset button to 
redraw the GUI. 

Keep in mind that the Car Simulator uses the maximum possible acceleration of the car 
according to Equation (8.20). In the Car Simulator, you’re driving “pedal to the metal.” 

Wheel Traction 

Up to this point, we have been modeling the car tires under the assumption they roll without 
sliding along the ground. In certain situations, however, this may not be the case. If a car is 
stopped and the accelerator is pushed to the floor, the tires may spin in place for a moment 
before the car starts to move forward. If a car tries to drive around a corner at too high a 
speed, it may slide outward. 

If you recall from the beginning of this section, the tires move the car forward because of 
the friction that exists between the tire and the surface of the ground. This force, known as 
the traction force, is equal to the normal force exerted on the tire multiplied by the 
coefficient of friction between the tire and road. 
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The traction force, shown in Equation (8.32), is the maximum force that can be applied to 
the tire for it to roll without sliding on the ground. The traction force for a given car is 
typically determined by putting the car through what is known as a skidpad test. The car is 



driven around a level, circular track. The velocity of the car is increased until centripetal 
acceleration of the car is equal to the traction force of the tires. 
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The r parameter in Equation (8.33) is the radius of the track. If the velocity of the car 
increases beyond this point, the centripetal force is greater than the traction force, and the car 
begins to slide outward on the track. The results of the skidpad test are usually expressed in 
terms of the maximum acceleration the tires can be subject to without sliding. On dry 
pavement, the 2004 Porsche Boxster S has a maximum tire acceleration of 0.91g, where g is 
the gravitational acceleration. 

This limiting acceleration applies to straight-line motion as well. If the torque applied to 
the wheels results in an acceleration that is greater than the maximum tire acceleration, the 
tires will spin against the ground. The maximum tire acceleration is therefore a limiting value 
on the acceleration of the car. No matter how much torque the engine is applying to the 
wheels, the acceleration of the car won’t be greater than the maximum tire acceleration. 

For game programming purposes, the implementation of wheel traction effects is fairly 
straightforward. The first thing to do is to compute the force applied to the wheels from the 
engine, which is a function of the engine torque, gear ratios, and wheel radius. 
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Next we compute the maximum frictional force from Equation (8.32). If the engine 
torque force is less than the maximum frictional force, the engine torque force is used in the 
equations of motion. If the engine torque force is greater than the maximum frictional force, 
then the wheels are sliding, and the maximum frictional force should be used in the equations 
of motion. 

The value of the coefficient of friction in Equation (8.32) depends on the condition of the 
tires and the surface on which the car is driving. A bald tire will have a lower coefficient of 
friction than will a tire with a normal tread. A tire will have a lower coefficient of friction on 
ice than it will on dry pavement. 

One final note about maximum tire acceleration is that it applies to the total acceleration 
of the car. A car going around a curve will experience a centripetal acceleration. The total 
acceleration of the car is equal to the square root of the sum of the squares of the centripetal 
and straight-line acceleration of the car. 
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One conclusion from Equation (8.35) is that a car that is accelerating into a curve is more 
likely to skid than a car traveling at a constant velocity around the same curve. 

Driving Around Curves 

Up to this point the discussion on the physics of cars has focused on the straight-line motion 
of a car. Of course, cars can’t drive in a straight line forever. At some point they need to turn 
or drive around a curve. Modeling a car driving around a curve can be separated into two 
areas depending on whether the car is performing a high-speed or low-speed turn. 



We’ll start with the subject of a car driving around a curve at low speeds. As you would 
expect, modeling low-speed curves is easier than modeling high-speed curves because some 
factors, such as centripetal acceleration, can be ignored. The wheels can be assumed to be 
rolling without slipping. Consider the car shown in Figure 8-10. The front wheels of the car 
are turned at an angle, δ, such that the car is making a right turn. If the car is traveling at a 
constant speed, it will drive in a circle of radius, rc. 

 

Figure 8-10. A car making a turn at low speeds 

The center of the circle that the car is traveling on is located at the intersection of lines 
drawn perpendicular to the front and rear right wheels. The radius of the circle can be found 
from trigonometric relations. The distance from the centers of the front and back wheels, l, is 
known as the wheelbase. The ratio of the wheelbase to the circle radius is equal to the sine of 
the wheel angle, δ. Rearranging this relation results in an equation for the circle radius. 
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Another important quantity to determine is the rate that a car will make the turn—that is, 
the angular velocity of the car during its turn. If the wheels are rolling without friction, the 
angular turn velocity, ωt, is equal to the translational velocity magnitude, v, of the car divided 
by the turn radius. 
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Using Equation (8.36), the angular turn velocity can be expressed in terms of the 
wheelbase and wheel angle. 
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Equations (8.36) and (8.38) provide all the information needed to model a low-speed 
turn. The turn radius can be determined from the wheelbase and wheel angle. The car then 
travels along this circle at an angular velocity determined from Equation (8.38). Let’s look at 
an example to see how it all fits together. Let’s say the driver of a Boxster S car wants to 
perform a low-speed 90-degree turn at a translational velocity of 10 m/s (36 km/hr). To make 



this turn, the wheels are turned at an angle of 10 degrees. The wheelbase of the Boxster S is 
2.41 m. What is the radius of the turn, and how long will it take the car to make the turn? 

The turn radius can be computed from Equation (8.36). 
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The time required to make a 90-degree turn is equal to the number of radians in the turn, 
π/2, divided by the angular turn velocity. 
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High-Speed Turns 

A general model for describing high-speed car turns is complicated by several factors. For 
one thing, as the car goes around the curve, the centripetal force experienced by the car may 
cause the tires to slide outward. In other words, the tires will have a velocity component 
normal to the direction in which they are rotating. The normal force component can also 
generate a torque about the center of mass of the car, causing the entire vehicle to rotate. You 
have probably seen this effect in watching a car take a high-speed turn where the back end of 
the car slides outward or “fishtails.” 

The simplest way to model high-speed turns is to compute the lateral force, Flateral, on 
the car as being equal to the difference between the centripetal force on the car and the 
frictional force acting on the tires. 
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The angle θ is the angle of any slope that the car might be driving on. In Equation (8.41), 
a positive lateral force is one acting outwards. Because the frictional force will never exceed 
the centripetal force (the car won’t be sucked into the center of the turn circle), the lateral 
force term will always be greater than or equal to zero. 

Equation (8.41) provides a rough approximation to lateral force, but it doesn’t model 
effects such as fishtailing or spinouts when a car tries to take a curve too fast. To get the more 
sophisticated high-speed turning effects requires that the lateral force be evaluated for each 
tire as it goes around the curve. This analysis is pretty complicated, involving concepts such 
as wheel slip angles, and is beyond the scope of this book. 

Modeling Car Crashes 

As we all know, cars sometimes run into things. In real life, hitting something with your car 
is generally a bad thing to have happen to you. In car simulations, sometimes it seems like 
half the fun is running into or bouncing off of other objects. We learned about the basics of 
collision modeling in Chapter 6, and many of the same concepts can be applied to cars. Cars 
are not solid blocks of metal. When they hit something, unless it is at very low speeds, the 
body of the car will crumple as a result of the collision. The collision is inelastic because 



some of the kinetic energy of the car and whatever it hits will be converted into work that is 
performed in damaging the car. 

In Chapter 6, equations were presented to compute the post-collision velocities of two 
objects in the direction of the line of action of the collision. Those expressions are repeated 
here in Equations (8.42a) and (8.42b). The post-collision velocities, v′1 and v′2, are functions 
of the masses of the two objects, m1 and m2, the pre-collision velocities, v1 and v2, and the 
coefficient of restitution, e. One of the objects will be the car. The other object could be 
almost anything—another car, a tree, a fast food restaurant, and so on. 
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If any part of the car is deformed during the collision, then the collision is inelastic, and 
the coefficient of restitution will be less than one. As a reminder, a more extensive discussion 
of elastic and inelastic collision can be found in Chapter 6. An extreme case for the car 
collision would be if the collision were completely inelastic, meaning that the coefficient of 
restitution is equal to zero. In this case, the car and the object it collided with would stick 
together, and they would have the same post-collision velocity shown in Equation (8.43). 
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In most cases, the collision won’t be completely inelastic, and the coefficient of 
restitution will have some nonzero value. The car will suffer a certain amount of damage, and 
it will bounce off the object it hits. The F1-Spirit Formula One racing game uses a value of 
0.25 for the coefficient of restitution. 

Motorcycles 
Motorcycles are another type of motor vehicle that can be used to create exciting game 
scenarios. Generally speaking, motorcycles are lighter, more agile, and have greater 
acceleration potential than cars, but much of the general physics to describe the acceleration 
and braking is the same between motorcycles and cars. Motorcycle engines generate torque 
that is applied to the back wheel, and friction between the wheel and the ground propels the 
motorcycle forward. Motorcycles are subject to the forces of aerodynamic drag, rolling 
friction, and traction, just as cars are. 

Table 8-4 compares some physical and performance characteristics between a sports car 
and a performance motorcycle. The sports car is the 2004 Porsche Boxster S we used in the 
“Cars” section of this chapter. The motorcycle is the 2004 Honda CBR1000RR. As you 
would expect, the mass of the motorcycle is considerably less than that of the car. The 
Boxster S has a higher top speed, but the motorcycle has greater acceleration. It can reach 
100 km/hr in a little over half the time it takes the car. The car engine is more powerful in 
terms of peak torque, but the motorcycle engine has a much higher redline rpm value (which 
is one reason why the acceleration potential is higher). 

Table 8-4. A Comparison of Motorcycle and Car Characteristics 



Quantity Honda CBR1000RR Porsche Boxster S 

Vehicle mass (kg) 180 1323 

0–100 km/hr (sec) 2.95 5.5 

Top speed (km/hr) 225 266 

Redline rpm 11650 7200 

Peak engine torque (N-m) 106 @ 8500 rpm 310 @ 4600 rpm 

Peak engine horsepower 153.5 @ 11000 rpm 258 @ 6400 rpm 

 
As we said before, many similarities exist in the physics that describe the motion of a 

motorcycle and car. There is one important area of difference that we will explore in a little 
more detail—how a motorcycle turns. 

Turning a Motorcycle 

Turning a car is pretty straightforward. The wheels are turned in the direction of the turn. If 
you try to turn in this manner on a motorcycle, except at very low speeds, you will crash the 
bike. The reason is an effect called gyroscopic precession. When the wheel of the bike is 
turned in one direction, a torque is applied to the wheel in the opposite direction, causing the 
bike to lean. In other words, if you turn the front wheel of a bike to the left, the bike will lean 
to the right and vice versa. Because of this effect, if you try to turn the front wheel of a 
motorcycle in the direction of the turn, you will fall forward off the bike. 

Tidbit It’s easy to demonstrate gyroscopic precession, and the bike doesn’t have to be moving to do it. Stand 

your motorcycle or bicycle straight up and turn the front wheel 90 degrees in either direction. The bike will lean in 

the opposite direction. 

The secret to successfully turning a motorcycle at higher speeds is to lean into the turn as 
shown in Figure 8-11. This type of leaning stabilizes the motion of the motorcycle during the 
turn. There are several ways to get a bike to lean into a turn. The first technique makes use of 
gyroscopic precession and is known as countersteering. To initiate a turn, the driver must 
turn the front wheel in the opposite direction of the turn. This maneuver may seem strange, 
but remember that turning the front wheel in the opposite direction of the turn causes the bike 
to lean into the turn. The proper lean can also be created or augmented by having the driver 
lean his shoulders into the direction of the turn. 



 

Figure 8-11. To successfully turn, a motorcycle must lean into the turn. (Photo courtesy of Brett 

McLeod) 

The mathematical equations that describe the forces and moments that exist during a 
countersteered motorcycle turn are quite complicated, with various moments of inertia terms 
and angular velocities. Unless you are building a very detailed motorcycle simulation, there 
is probably no reason to try to include that level of complexity in your game. The way to 
include countersteering is probably more as a visual effect than anything else. When the 
motorcycle riders in your games make a turn, have the motorcycle lean into the turn. 

Adding Sophisticated Effects to the Car or 
Motorcycle Models 
This chapter has covered the basics of modeling the motion of cars and motorcycles. As you 
might imagine, certain sophisticated physical effects that govern the motion of cars and 
motorcycles were not covered in detail. This chapter already mentioned that a true 
representation of the lateral force experienced by a car during a turn involves analyzing the 
lateral force experienced by each of the four wheels. Another effect that happens during a 
turn is that weight is shifted to the outside wheels. 

To add more sophisticated effects to your car or motorcycle model, use the same 
sequence of steps that have been used to come up with the basic model. First, create a force 
diagram to determine what forces and torques act on the vehicle and the direction in which 
they act. Second, come up with equations that describe the motion of the vehicle based on the 
force diagram. Finally, code up and solve the equations of motion using an ODE solver. 



Summary 
In this chapter, once again armed with a basic knowledge of Newtonian mechanics and 
kinematics, you learned the basic physics behind the forces and accelerations that act upon 
cars and motorcycles. Many of the concepts covered in this chapter are equally applicable to 
other types of motor vehicles such as snowmobiles or tanks. You should now be able to 
create fun and realistic motor vehicle simulations. 

Some of the specific things you learned in this chapter include the following: 

 * How transmission gears are used to increase engine torque 

 * How to model aerodynamic drag and rolling friction for a car 

 * What the redline rpm value is and its effect on car performance 

 * How the wheel torque is function of the engine torque, the gear ratio, and the final 
drive ratio 

 * How wheel traction limits the maximum acceleration of a car 

 * How to calculate the turn radius and turn rate for a car driving around a curve 

 * How motorcycles turn by leaning into the turn 
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